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The finite electron mass streamlined Darwin field {SDF)} modetl is
derived for a quasineutral plasma and contrasted to the SDF model for
a nonneutral plasma. Because the Darwin model is used, the Courant
numerical stability condition ¢ A¢/Ax < 1 is avoided. In a quasineutral
plasma, the w,, At < 2 stability condition and the Ax/A,, <1 accuracy
condition are avoided by the use of a quasineutral Poisson equation. A
fast coupled-elliptic solution technigue, found to work extremesly well
with the nonneutral SOF model, also works well with the quasineutral
SDF model. Because of the similarity of the field equations for a non-
neutral and a quasineutral plasma, it may be possible {0 simulate a
plasma with both nonneutral and quasineutral regions using a single
SDF solver.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The Darwin or magnetoinductive approximation to
Maxwell's equations in a plasma allows solutions that
retain the electrostatic, magnetostatic, and inductive electric
fields without the time resolution of fully electromagnetic
modes. Under this approximation, the hyperbolic
Maxwell’s equations become the elliptic Darwin equations.
Since fully electromagnetic modes are not resolved, the
Courant stability condition ¢ At/dx <1, required for the
time explicit numerical solution of Maxwell's equations, is
avoided.

While it is alsc possible to solve Maxwell’s equations with
a time implicit numerical solution, there may be problems
of interest in which a Darwin model is preferable. For
example, if full EM wave propagation is not needed, the
nonphysical dissipation due to implicit differencing of
Maxwell’s equations would make the Darwin model more
accurate [1]. An implicit EM code can also be used to
numerically damp plasma oscillations, but v, At/4x ~ 0.3
must be maintained for energy conservation [2]. Recently,
it has been shown that a method based on guiding center
electrons greatly improves energy conservation in implicit
schemes [3]. However, this method cannot be used
for simulations in which clectron cyclotron physics must
be retained while electron plasma oscillations can be
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eliminated, e.g., ECR plasma processing chambers with
typical parameters such that w,, ~4w,. We suspect that
the Darwin model with quasineutrality included to remove
the same scales as implicit simulation may not require the
same care in choosing 4t and 4x for many problems.

A new way to formulate the Darwin model in a set of
coupled equations has resulted in fewer boundary condition
difficulties [4]. Recently, the dynamic ADI (DADI)
method for elliptic equations has been successfully applied
to these coupled equations [ 5] resulting in a large reduction
in CPU time compared to previous iterative techniques. The
nonneutral SDF model has already been used to simulate
the MIRRORTRON accelerator [6]. For problems in which
space charge waves as well as EM propagation need not be
resolved, Hewett and Nielson [7] combined the traditional
Darwin model with a quasineuira! model to eliminate the
w,, At < 2 stability condition and the 4x/i,, <1 accuracy
condition as well as the ¢ A1/dx < 1 stability condition.
The key result of the present paper is that the quasineutral
equations can also be combined with the new Darwin
formulation and DADI can still be applied to the resulting
equations.

The quasineutral model will have applications in plasma
simulation of high altitude atmospheric disturbances if finite
electron mass effects are of interest, e.g., if lower hybrid
waves are important. Since the nonneutral and quasineutral
SDF equations are so similar, a combined model to treat a
plasma with a quasineutral bulk and nonneutral sheath may
be possible. A detailed treatment of both plasma regions
may be important for plasma processing inductive source
simulations.

The plan of this paper is as follows. In Section 2, the
quasineutral Darwin model is reviewed. In Section 3, the
guasineutrali SDF model will be derived and contrasted to
the nonneutral SDF model and the choice of DADI will be
discussed. In Section 4, some boundary condition issues will
be discussed. In Section 5, results for the quasineutral tests
will be presented. In Section 6, some concluding remarks
concerning merging of the quasineuiral and nonneutral
models will be made.
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2. BASIC EQUATIONS FOR THE QUASINEUTRAL
DARWIN MODEL

For completeness, we give a very cursory derivation of
the traditional Darwin model-details can be found in
several previous papers [8, 4, 5, 7]. Readers aiready familar
with the quasineutral Darwin model may only want to refer
to this section when reading the derivation presented in
Section 3. Before starting, we first define the notation of
vector decomposition. A vector has a curl-frec or irrotational
part and a divergence-free or solenoidal part,

V=VIRR+VSOL, (1}

where Vx VIRR =0 and V. VS°L =0, To solve for VRR =
—Vp with V given, take the divergence of Eq. (1). Then

V= _V.V, ()

where p is the potential. Boundary conditions on p make the
decomposition unique.
Maxwell’s curl equations including plasma sources are

d,B= —VxE, (3)
O E=cVxB—c?uyd. (4)

Since V-B =0, B is divergence-free or purely solenoidal,
Applying Eq. (1) to E and J and substituting into Egs. (3)
and (4} gives

3 B= -V x E%L, (5)
8,E%OL 4 8, E"R% = 2V x B — 2, J5O — 2o JER. (6)

Taking the curl of Eg. (6) and substituting Eq. (5) would
result in a wave equation that supports fully electro-
magnetic modes traveling at the speed of light, It is these
waves that require the numerical stability condition
¢ AtjAx <1 in explicit codes. To eliminate fully electro-
magnetic modes, set 8, E3°L = 0. This is the key assumption
in the Darwin model; it eliminates retardation effects and
thus eliminates purely electromagnetic modes [8] After
this step, one can separate Eq. (6) into irrotational and
solenoidal parts,

a,ElRR+EJlJ]RR=0, (7)
VxB=p,J%°". (8)

Equations (5) and (8) constitute an clliptic set of equa-
tions for B and ES°L. To see how this is so, first substitute
the vector potential B=V x A into Eq. (8} and use the
vector identity VxVx A =V(V-A)—V?A. The Coulomb
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gauge V-A=0 is chosen to keep the left-hand side of
Eq. (8} irrotational. With the Coulomb gauge, one obtains

VZA = — 1y J5O-. (9)

Next, take the curl of Eq. (5), substitute Eq. (8), and use the
vector identity VxV x E3°L = V(V . E3°L) - VZESCL, Note
that V-ESCL =0 by definition. With this definition, one
obtains

VZESOL = 11,0, J5O. (10)

Next, one could take the divergence of Eq. (7), substitute
the charge continuity equation, and use the definition
E'"® = _V¢ to obtain the Poisson equation. Under
quasineutrality, », = n; and the Poisson equation cannot be
used to find ¢. However, E'™® £ 0 as can be seen with an
elementary derivation of ion acoustic waves [9]. Therefore,
an equation must be derived for EI®R that is appropriate for
the quasineutral limit. Quasineutrality also implies that J
should be purely solenoidal but numerical or boundary
errors can lead to some J'®®. Hence J5°" is explicitly writ-
ten in Eqs. (9) and (10) as a reminder that something must
be done to make sure J does not develop an irrotational
part in a quasineutral plasma.

Following Hewett and Nielson [7], the quasineutral
Poisson equation is derived from the sum of the momentum
equations

e U+ V. -n,UU;=(e/m)n[E+UxB]-VnT/m,
(11)
for the ions and
dn,U,+V -nU,U,=—{e/m,)n,[E+U,xB]

—Vu, T, jm,, {12}

for the electrons. Note that for simplicity, the collisional
terms are not written and one singly charged ion species is

used; #, = i, 1s explicitly included. Multiplying Eq. (11} by
ety and Eq. (12) by —ep, and adding the results gives

#o0, d=pE+Q, (13)

where
w=pol(e’/m,)+ (e*/m,)] n,
and

Q=ppl(e/m) I, xB—(e/m,)Vn,T,— eV .n,UU;
—(efm,)J . xB+ (e/m,)Vn,T.+eV.nUU,].
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From the sum of the continuity equations and #,=n,,
one obtains the quasineutrality condition

V.J=0. (14)

After taking the divergence of Eq. (13) and using Eq. (14)
and the definitions E=ES?T 4+ E®R E™* = _V¢, one
obtains the quasineutral Poisson equation

V.uVé=V. uE°L +V.Q. (15)

Finally, substituting Eq.{(13) into Eq.{10) and noting
8,459 = [8,J15°" because &, commutes with both V- and
V x , one obtains

V2ESO" = [4E + Q15 (16)

To summarize, if given appropriate boundary conditions
and methods to advance the plasma fluid quantities to the
current time level, one could solve Eq. {9), use B=V x A to
obtain B, solve Egs. (15) and (16), and then use E = ES°L —
V¢ to obtain E.

Historically, this model has been used for micro-
turbulence studies. These simulations concentrated on
localized regions near the plasma boundary. One would like
to extend the model to simulate entire plasma regions as is
done with zero electron mass Darwin (ZEM) models
[10-12].

ZEM models are often set up to model vacuum regions as
well as plasma regions. To differentiate between a vacuum
cell and a plasma cell, a cutoff density, usually a few percent
of the maximum plasma density, is used. If the density in a
given cell region is less than the cutoff density, the cell is
declared to be a vacuum cell. In the vacuum cells, VZA =0
and V?E = ( are solved instead of the ZEM field equations.
The finite cutoff is necessary or the Alfvén wave Courant
condition v, At/4x < 1 would be violated. These ideas are
presented in more detail in papers by Hewett and Harned
[11, 12] and can also be applied to our model.

Solving Eg. (16) is difficult. Let 8=Q+ yE. Then,
Egs. (1) and (2) for the right-hand side decomposition of
Eq. (16) give V2ESOL =§5CL = § 4+ V5, where Vis= —V .S,
Boundary conditions for s are not obvicus. Furthermore,
if the right-hand side decomposition is done perfectly,
the divergence of Eq.(16) gives V’[V.ES°L]1=0 but
V-ESPt =0 is guaranteed to be numerically preserved only
if V. ESOF =0 is forced on the boundary. Since such control
can be difficult to enforce, V - E3“t = 0 musit be guaranteed
by numerically removing the part that has finite divergence
by divergence cleaning. Part of the motivation for the
nonneutral SDF model is to aveid these difficulties. We take
a similar approach with the quasineutral model.
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3. STREAMLINED EQUATIONS FOR THE
QUASINEUTRAL MODEL

A more practical solution procedure for the nonneutral
SDF was given by Hewett and Boyd [4]. They found that
perfect decomposition was not only impossible numerically
but also not necessary for certain arrangements of the
equations. For example, if one just solves

VA= —puyd, (17)
instead of Eq. (9), A will have spurious irrotational terms.
These terms will cancel when Vx A is used to obtain B
assuming the finite differencing ensures V-V x =0.

One may be tempted to use another simple argument to
streamline Eq. (16). That is, since Eq. (16) must be solved in
conjunction with Eq. (15), the right-hand side of Eq. (16} is
automatically guaranteed to be divergence-free since the
solution of Eq.(15) forces V-J=0 via the derivation of
Eq. (15) from Eq. (14). Although this is true, one is again
bedeviled by V- ES°" =0 everywhere only if V-E*®“ =0 is
forced on the boundary. One is forced to do divergence
cleaning, but fortunately, the divergence cleaning process
itself can be incorporated directly into the solution method.

Letting F be the unclean version of E3°% Eq.(16)
without the RHS decomposition becomes

VIF = u(E%°F —V§) + Q, (18)

where E = ES°L — V4 has been used. To clean F, one takes
F = E3°Y — V. That 1s, the solution to Eq. (18) is made up
of the wanted quantity ES°" and an unwanted quantity due
to V- E®°L £ 0 numerically. Solving for ES°L gives

ESCL =F + V. (19}
Substituting Eq. (19) into Eq. (18) gives
V2F — uF = (Vi — V) + Q. (20)

An equation for y is obtained by taking the divergence of
Eq. (19) and using the requirement V- ES°F =0, The result
is

Viy=—-V.F. (21)
Next, Eq. (19) is substituted into Eq. (15) to give
V- uVg=V. uy(F+Vi)+V.Q. {22)

Equations (20)-(22) form a complete set of equations for E,
where

E=F+Vy — V. (23)
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~This set of equations can be reduced by defining
# = ¢ — . Equation (20) becomes

VF —uF=Q—uV§. (24)

Equation (22} becomes
V.uVg=V.Q+V. uF. (25)

Equation (23) becomes
E=F-V{. (26)

Equations (24)-(26) can be used to determine a
quasineutral E. Equation (21} is never solved. Equation
(21) guarantees V-E°L=0 but E’°" is not used to
determine E. In other words, the problem of enforcing
V. ES°L = Qs circumvented by the redefinition of potentials
to include the divergence cleaning error and the error can-
cels when E is formed at the end of the calculation. To check
if ¢ can be recovered, one can iterate Eqgs. (24) and (25) to
convergence, then solve Eq. (21) for ¢, and finally calculate
é =&+ . The iteration is allowed to select a gauge ¥ #0,
but as will be demonstrated, the correct solutions for E and
¢ are always returned.
The vacuum analogues of Egs. {24) and (25) are

VIF =0 (27)

and

V§=V-F. (28)

This guarantees V-E =0 in the vacuum. A cutoff switch
could be used to solve Egs. (24) and (25) in a plasma region
and Eqgs. (27) and (28) in a vacuum region while using the
same numerical technique to solve either set of equations.

The nonneutral SDF model is derived from equations
similar to those outlined in Section 2. In fact, the main
physics difference is that the Poisson equation replaces the
quasineutral Poisson equation. The streamlining of the
inductive electric field equation is accomplished by adding
terms to both sides of Eq. (10) to compensate for not doing
the right-hand side decomposition [5]. The potential v
then contains a physical quantity and is not just a product
of divergence cleaning as in the quasineutral case. Now if
one again uses ¢=¢—, the nonneutral SDF model
becomes

VIF—uF=Q—uV3j,
V3= —pleg+V-F,

(29)
(30)
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and

E=F - V{. (31)
These equations are mathematically similar to Eqgs. (24)-
(26) and form a more compact version of the nonneutral
SDF model.

To selve Eqs. (24) and (25) we use the DADI method
applied to coupled elliptic equations. DADI works as
follows [13, 5]. An artificial time dependence is added to
convert the coupled elliptic equations into parabolic form,
then noniterative ADI is used to advance the “parabolic”
equations in “time”. A dynamic time step size changer is
then implemented to speed up convergence to the time
asymptotic state which is the solution of the original eiliptic
equations,

Previous attempts to solve the coupled nonneutral SDF
equations using Picard iteration were slow to converge [4].
Appiication of a rapid elliptic solver (FFT or cyclic reduc-
tion} would reduce computer time to solve each equation
individually but would not reduce the number of iterations
required to solve the coupled set. Furthermore, rapid elliptic
solvers require the equation to be analytically separable.
With the quasineutral Poisson equation, separability is
impossible. One must solve the finite difference version of
the equations with a direct matrix inversion method such as
a conjugate gradient method or with an iterative method
such as ADI.

A thorough comparison between the DADI solver and
the BCG solver as applied to the nonneutral SDF model is
provided in Hewett, Larson, and Doss [5]. In that paper,
DADI was found to give superior performance in solving
the equations. Even for problems that took many iterations
to get small residuals, DADI fared better. We assume
similar performance for the quasineutral SDF equations
because this set of equations is mathematically similar to the
nonneutral SDF equations.

4. BOUNDARY CONDITION CONSIDERATIONS

In the test cases for the solution of Egs. (24)-(26),
periodic boundaries in y and a known E in x will be used.
For this case, boundary conditions will be illustrated in
detail. A conducting wall boundary condition will aiso be
described.

Consider the left boundary at x =0. Equation (26) gives

F (0, y)=E 0, )+ 3,80, y),
F,(0, »)=E(0, ¥) +2,4(0, y).

(32)
(33)
As in the nonneutral SDF model, the boundary conditions

for ¢ may be chosen arbitrarily. For example, one can
have Dirichlet zero, i.e., ¢(0, ¥) =0 or Neumann zero, i.e.,
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8,40, y) =0. If one allows order Ax accurate finite
difference equations on the boundary, then

F(0,5)=E.0, )+ (1—p)

x [f(dx, y) — (0, y)]/dx,
F (0, y)=E (0, v} +0.58

x [0, y+ 4y) — §(0, y— Ay) )4y, (35)

(34)

and for g,

$(0, y) = Bp(4x, y), (36)
where E(Q, v) is known and §=0 for Dirichlet zero and
f =1 for Neumann zero. Similar equations can be derived
for the right boundary.

It is also possible to construct boundary conditions that
are order Ax® accurate. Using Neumann zero boundary
conditions for ¢, Egs. (34} and (35) with =1 are used for
F boundary conditions. Next, a finite difference version of
Eq. (25) is constructed at x=0. For order 4x? accuracy,
central differencing is used. Values for p, Q_ and F_ at
x= —Ax are therefore needed; p and Q. can only be
obtained from a projection; i.e.,

H(_Axs }’)=21U(0, J’)"ﬂ(d-’f, }’), (37)
and similarly for Q.. For F at x = — 4x, the x component
of Eq. {24) is used. Also using F,=E and d ¢ =0at x=0,
the x component equation at x =0 is

The finite difference version of Eq. (38) gives

F,\c( _Ax! }’) = ZEY{O’ }’) + sz[Qx(Oi y) + ,LL(O, y) E.r(()’ }’)
—IE(0, »)1 - F (4x, p). (39)

Finally, the finite difference version of Neumann zero,
#(—dx. y)=¢(dx, v), is used in Eq. (25) at x =0. Again,
similar equations can be derived for the right boundary.

For an actual problem, consider a vacuum region
touching a perfectly conducting wall. If the wall is located at
x=0 and runs along y, the physical boundary conditions
are E (0, y)=0 and ¢ E (0, ) =0. This is consistent with
requiring V- E =0 in a vacuum and at the wall. If boundary
conditions in F are chosen to match those of E, the x com-
ponent of Eq. (27} is solved with a Neumann zero boundary
condition at x =0 and the y component of Eq. (27) 1s solved
with a Dirichlet zero boundary condition at x=20.

Next, one could choose ¢ =0 at x =0 for the boundary
condition of Eq. (28). At x =0, Eq. (28) is then reduced to

&24(0, y) =0. (40)
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Equation (40) is then used to project the value ¢( — 4x, y) =
—@{A4x, y). This would then be used to find E_ via the x
component of Eq. (26).

5. RESULTS FOR THE QUASINEUTRAL TEST PROBLEM

To test the two-dimensional DADI solution of the
streamlined quasineutral equations for E, a test electric field
is chosen of the form

E = [4x({, - x) cos(2my/l, /I3,

4x(l,— x}sin(2my/l,)/13, 0]. (41)
The field is chosen to have an appreciable irrotational part.
With E given one can decompose it to obtain ¢. Boundary
conditions for ¢ are chosen to be periodic in y and Dirichlet
constant in x, Next, the curt of Eq. (3) is taken and Eq. (8)
1s substituted to obtain

PO J5C = —V xV xE, (42)
If one uses the quasineutral assumption J5°F = J, Eq. (13)
can be substituted into Eq. {42) to obtain

Q=-VxVxE—LE. {43)
With p picked to be
p=vlxfl +1— fsin(4ny/L,}), (44)

where f = 0for a curved pand f =1 for a ramped g, Eq. (43)
can be used to obtain Q.

With Q and g known, Egs. (24) and (25) are iterated to
convergence. The coupled equations are said to converge
when the .2 norm of the residual, normalized by the L2
norm of the source terms  and V - Q, is less than a chosen
test parameter & Once Eqgs. (24) and (25) are solved,
Eq. (26) is used to obtain E_ for comparison to the original
test field E; E, should equal E within convergence error.
Finally, Eq. (21) is solved for . The boundary conditions
for ¢ are ¥(0,3)=¢(0, y)—4(0,y). Similar boundary
conditions are used at x =1/_; y + ¢ should equal $ within
convergence error. Note that in an actual simulation there
1s no need to solve Eq. (21).

The physical parameters of the test problem were { = 20,
{,=20,and v=1x 10% in arbitrary units. The large value of
v was chosen to mimic the small collisioniess skin depth in
a quasineutral plasma. The numerical parameters were 39
grid points in x and 31 grid points in y. The tests were
petformed on a CRAY2 machine running UNICOS.

The shape of g, the x boundary conditions for ¢, and the
test parameter ¢ were varied for the test. The y boundary
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FIG. 1. (a} E with longest vector 0.997, (b) ¢ with minimum contour —2.36 and maximum contour 2.36. (¢} Curved g with minimum contour
2.19 x 10° and maximum contour 2.78 x 10%. (d) Ramped z with minimum contour 1.07 x 10* and maximum contour 1.93 x 104, All contour plots have
seven equally spaced contours with the minimum contour indicated by the dotted line and the maximum contour indicated by the bold line.

conditions were periodic. Figure ta shows the chosen E
with the given parameters. Figure 1b shows the ¢ that
results from the decomposition of E. Figure 1c shows the
curved p and Fig. 1d shows the ramped g

Figures 2, 3, and 4 pertain to a curved g and e=10"".
Figures 2a and 2b are the F and 4 solutions with Dirichlet
zero x boundary conditions for §. Figure 2c shows the
resulting field E, and Fig. 2d shows the error E—E,.
Figure 2e shows the resulting potential ¢, =¢ +y and
Fig. 2f shows the error ¢ — ¢, ; 83 iterations were required
for convergence. Figures 3 show a similar combination for
solutions with Neumann zero x boundary conditions for ¢;
148 iterations were required for convergence. Figures 4
show a similar combination for solutions with Neumann
zero x boundary conditions for § and with order Ax?
accurate differencing on the x boundaries; 551 iterations

were required for convergence. Note that the accuracy for x
boundary differencing on Figs. 2 and 3 was only order Ax.

The main result of all of these figures is that despite the
difference in the choice of the arbitrary boundary condition
for ¢, the correct solutions for E are always returned with
1% or less error and the correct solutions for ¢ are always
returned within 2.5% or less error. The topology of the
solutions for F and especially for ¢ change on converting
from Dirichlet zero to Neumann zero boundary conditions.
No reduction in error is evident from the use of order Ax?
accurate boundary conditions.

Figures 5 pertain to a ramped u, £ = 103, and Dirichlet
zero boundary conditions for @. Both E and ¢ are returned
within 1% or less error. Neumann zero, order Ax and
Neumann zero, order Ax? tests were also done successfully.
The Dirichlet zero solution converged in 19 iterations, the
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Neumann zero solution convérged in 45 iterations, and
the Neumann zero solution with order Ax? boundary
differencing converged in 24 iterations. It may be that
because &, ¢ =0 and the equations take a simpler form, the
ramped p cases converge more quickly.

We have also done cases for

£=100(1 + R}2 —sin(ky)), (45)
for x <5 and x> 10 and
£=10,000(1 + 0.1 R}2 — sin{ky)), {46)

for 5€< x < 10, where R is a random number between zero
and one. This ¢ was chosen to mimic the kind of jagged
densities that may be gencrated in simulations. As
expected, both E and ¢ are returned within 1% or less
error. For e = 1077, the Dirichlet zero solution converged in
56 iterations, the Neumann zero solution converged in
63 iterations, and the Neumann zero solution with order
Ax? boundary differencing converged in 56 iterations.

When smaller residuals were chosen, convergence became
more difficult. A simple run with a ramped g and Dirichlet
zero boundary conditions at Ax accuracy requires 2508
iterations to converge to e=10"* as opposed to 19 itera-
tions to converge to ¢ = 10~? as previously mentioned. For
a Dirichlet zero boundary condition and p from Eqgs. (45)
and (46), 1070 iterations were required to converge to
g=10""%

In all runs, the normalized residual oscillates about a
slowly descending envelope. The oscillation in residual
suggests there is a wave equation being solved during the
iteration in “time.” The oscillation may be damped away
more rapidly and thus reduce iteration count to con-
vergence if more implicitness is added to DADI. Here, the
DADI implicitness is confined to the dependent quantity in
the equation, ie., F in Eq.(24) and ¢ in Eq.(25); ¢ in
Eq. (24) and F in Eq.(25) are both lagged in “time.”
Recently, a new version of DADI for coupled elliptic equa-
tions in which the lagging is removed has shown a large
reduction in the iteration count and in the overall cpu time
to achieve low residuals [14]. With some modification
required by the V. uF term in Eq. {25), the new version of
the DADI method would be applicable here.

6. CONCLUSION

The quasineutral streamlined Darwin solution in its
present form is already applicable to several simulations
such as magnetically confined plasmas and magnetospheric
plasmas. To make such simulations practical, time step
constraints of the form w_, 4f < 1 could be relaxed by an
implicit treatment of the magnetic field and fluid equations.
Of course, as mentioned in the Introduction, implicit
methods may introduce numerical errors and so must
always be used carefully.
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To apply this solution technique to general plasma
processing simulations, we need to complete other develop-
ments. For example, a way to couple waveguide or antenna
modes into the Darwin equations must be found. Also, we
must consider a combined quasineutral and nonneutral
simulation. If appropriate simulation boundary conditions
and methods to advance the plasma fluid quantities in either
a quasineutral or nonneutral region of the plasma are given,
a gencralized streamlined Darwin model for the electric and
magnetic fields can be written. This enables detailed sheath
modeling which is not possible if the vacuum equations,
Eqs. (27) and (28), are solved in a low density nonneutral
region. The equations for the magnetic fieid remain the
same as before, but Egs. (24) and {25) could be merged with
Egs. (29) and (30) to form a single set of equations that is
still amenable to DADI. A switch from fully nonneutral to
fully quasineutral solution would have to be devised. One
such switch could be based on a comparison of the mesh size
to the local Debye length. If the Debye length is poorly
resolved, a quasineutral solution could be chosen, whereas
if the Debye length is well resolved, a nonneutral solution
could be chosen.
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